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We report an exact result for the calculation of the probability distribution of the Bernoulli-Malthus-Verhulst
model driven by a multiplicative colored noise. We study the conditions under which the probability distribu-
tion of the Malthus-Verhulst model can exhibit a transition from a unimodal to a bimodal distribution depend-
ing on the value of a critical parameter. Also we show that the mean value of x�t� in the latter model always
approaches asymptotically the value 1.
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In this Rapid Communication, we calculate the exact
probability distribution �PD� for the Bernoulli-Malthus-
Verhulst �BMV� model driven by a multiplicative colored
noise. Our starting point is the stochastic differential equa-
tion �SDE�

ẋ = �a0�t� + a1�1�t��x�1 + bx�� , �1�

where the deterministic growth rate a0�t� is perturbed by a
colored noise �1�t�, in which a1, b, and � are free param-
eters. Specifically we consider here �1�t� as the Ornstein-
Uhlenbeck �OU� process defined by the SDE

�̇1�t� = − ��1�t� + �c��t� , �2�

where ��0 is the reciprocal of the correlation time of the
OU process and c�0 is the intensity of the Gaussian white
noise �GWN� ��t�, defined by the mean value ���t��=0 and
the correlation function ���t���t���=��t− t��. This type of
model has been widely considered in the literature �1�. On
setting �=1 and b=−1 we recover the Malthus-Verhulst
�MV� or logistic model

ẋ = �a0�t� + a1�1�t��x�1 − x� , �3�

which was proposed many years ago for describing the sur-
vival of a population �2–5� and it is one of the most success-
ful models in population dynamics. In addition, the MV
model has found applications in many other areas of science
such as social sciences �6,7�, autocatalytic chemical reactions
�8�, biological and biochemical systems �9–11�, and as an
effective model for the description of the population of pho-
tons in a single mode laser �9,12,13�.

Stochastic perturbations on model Eq. �3� have been con-
sidered in many places in the literature. References �2,3,5,9�
are classic references. They contain several applications and
developments of this model. In �14� stability conditions are
obtained when the growth rate a0 is perturbed by a GWN. In
�15–18� the transient behavior has been investigated when
the system is driven by the same type of perturbation and the
relaxation time of the system is calculated as a function of
noise intensity. In �19� the results of �16� are extended to the

case in which a0 is perturbed by a colored Gaussian noise
and confirmed by an analogical experiment as well as by
numerical simulations. The authors in �20� consider the
model ẋ=ax−bx2+x�1�t�+�2�t�, where �1�t� and �2�t� are
correlated GWNs, in order to analyze a cancer cell popula-
tion. Using the Fokker-Planck equation �FPE� they analyze
the behavior of the stationary PD. In �21� a connection be-
tween the logistic equation with a0 perturbed by a GWN and
the stochastic resonance in a linear system is investigated.

Next we perform the calculations for the exact PD, ana-
lyze the properties of the PD for the MV model, and evaluate
the mean value of x�t� providing a procedure to calculate the
higher order moments for the last model.

The model Eq. �1� can be reduced to a linear SDE via the
transformation

�2 = �1/�� ln��1 + bx��/x�� �4�

which leads to the equation

�̇2 = − a0 − a1�1�t� . �5�

We emphasize that, for the points x=0 and 1+bx�=0, the
transformation Eq. �4� does not hold. The behavior of the
system in these points has to be analyzed through a limit
procedure. The details for the case �=1 and b=−1 are dis-
cussed below. We now consider Eqs. �2� and �5� as a system
of linear SDEs describing a Gaussian process in the variables
��1 ,�2�. The corresponding FPE is

�P

�t
=

�

��2
��a0 + a1�1�P� +

�

��1
���1P� +

1

2
c
�2P

��1
2 . �6�

Since in Eqs. �2� and �5� the noise is additive, the Ito and the
Stratonovich prescriptions produce the same result �2,22�. To
solve Eq. �6� we will use the characteristic function

Z�k,t;�0,t0� =� eik1�1+ik2zP��,t	�0,t0�d�1d�2. �7�

Replacing it into Eq. �6� we obtain

�Z

�t
= − ik2a0Z − ik2a1
1

i

�Z

�k1
� − ik1�
1

i

�Z

�k1
� −

1

2
ck1

2Z .

�8�

Using the characteristic function for a Gaussian process �23�
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Z�k,t;�0,t0� = eik�m��t�−�1/2�k�k�����t�, �9�

we obtain the evolution equations for the moments m��t� and
for the correlation matrix ����t�

ṁ1 = − �m1, ṁ2 = − a0 − a1m1, �10�

�̇11 = c − 2��11, �̇12 = − a1�11 − ��12, �̇22 = − 2a1�12.

�11�

The initial conditions for these equations are m1�t0�=�1
0,

m2�t0�=�2
0, �11�t0�=0, �12�t0�=0, and �22�t0�=0. The solu-

tion of the previous system �10� and �11� is

m1 = �1
0e−��t−t0�, m2 = �2

0 − a0�t − t0� + �a1�1
0/���e−��t−t0� − 1� ,

�12�

�11 = c/�2���1 − e−2��t−t0��, �12 = − ca1/�2�2��1 − e−��t−t0��2,

�13�

�22 = ca1
2/�2�3��2��t − t0� − �3 − e−��t−t0���1 − e−��t−t0��� ,

�14�

where we focused on a0�t�=a0=const. Replacing Eq. �9� into
Eq. �7� and taking the inverse Fourier transform we obtain

P��,t	�0,t0� = 1/�4	2 det�����


exp�− 1
2 ��� − m�����

−1��� − m�� . �15�

Integrating on �1 gives

P��2,t	�2
0,�1

0,t0� = 1/�2	�22 exp�− 1/�2�22���2 − m2�2 .

�16�

Using Eq. �4� the exact PD for the process x�t� is

P�x,t� = 1/�2	�221/�x�1 + bx���


exp�−
1

2�22
� 1

�
ln
1 + bx�

x� � − m2�2� . �17�

Next we focus on the PD for the MV model. We study the
conditions under which the PD makes a transition from a
unimodal to a bimodal distribution. The PD is

p�x,t� =
1

�2	�22

1

x�1 − x�
exp�−

1

2�22
�ln
1 − x

x
� − m2�2� .

�18�

Considering the behavior at the extrema of the interval, for
any finite time t, it is straightforward to show that

lim
x→0+

p�x,t� = 0, lim
x→1−

p�x,t� = 0. �19�

This behavior is shown in Figs. 1 and 2.
Taking the derivative of p�x , t� with respect to x we find

as a condition for an extremum

ln�1 − x� − ln x = − 2�22�t�x + �22�t� + m2�t� . �20�

This can be solved graphically by finding the intersection
between the functions y1=ln�1−x�−ln x and y2=−2�22�t�x
+�22�t�+m2�t� �see Fig. 3�. The function y1 is a monotonic
function defined on the open interval �0,1� which diverges
positively for x=0 and negatively for x=1. We also note that
y1�1/2�=0. The straight line y2 has a negative slope that has

FIG. 1. Time evolution of p�x , t�: On the x axes the time t, on
the y axes the variable x, and on the z axes p�x , t�. The values of the
parameters are x0=0.3, a0=0.04, a1=1, �=1, �=10, and c=20. It is
clear that at the beginning the probability is concentrated in a region
near x=0 �first graphic�. For large time the probability is concen-
trated near x=1 �second graphic�.

FIG. 2. PD p�x , t� at two times. Values of the parameters are the
same as in Fig. 1. In the first graphic p�x , t� still shows a maximum,
and in the second one p�x , t� shows two sharp maxima near x=0
and x=1 with an evident difference in the intensity; p�x , t� vanishes
at the extrema of the interval.
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an intercept with the x axis at the point x̄=1/2�1
+m2�t� /�22�t��. For sufficiently large time t, m2�t� is a nega-
tive function while �22�t� is a positive function. Hence x̄
�1/2. In particular x̄�0 when m2�t� /�22�t��−1. For large
time, using Eqs. �12� and �14�, x̄�0 when a0�1, where

� = �2/�ca1
2� �21�

is the critical parameter. In this case the straight line has only
one intersection point with y1 that asymptotically approaches
the point x=1. The PD has only a maximum near x=1.

When a0��1 the intersection point of y2 with the x axis
lies in the interval �0,1�. The slope will increase in modulus
up to a certain time t= tc, when the slope will be the same of
the tangent straight line. The equations defining the time tc
are

1/��1 − xc�xc� = 2�22�tc� , �22�

ln�1 − xc� − ln xc = − 2�22�tc�xc + �22�tc� + m2�tc� . �23�

Starting from the time tc, the straight line will have three
intercepts with y1 corresponding to two maxima, located near
the points x=0 and x=1 and a minimum near the point x
= x̄; p�x , t� is now a bimodal distribution �see Figs. 1 and 2�.
Based on Fig. 3 we can deduce that the intensity of the
maximum near x=0 is much smaller than the intensity of the
maximum near x=1. This is due to the fact that the intersec-
tion of the straight line with the x axis occurs at x̄�1/2
producing this asymmetry. On the other hand, Fig. 2 shows
that at large time the two maxima are very sharp approaching
x=0 and x=1, respectively. A rough estimation of tc is given
by neglecting the exponential terms in �22�t� and m2�t�.
Making this approximation we can find the critical time as a
function of xc from Eq. �22�. It has been previously shown
that the abscissa of the intersection between the straight line
and the x axis, x̄, is smaller than 1/2. As a consequence, the

first intersection between the straight line and the curve must
occur on the left of x̄ �see Fig. 3�. Then we can neglect the
terms of order O�xc

2�. Solving Eq. �22� gives

tc = �3xc�1 − xc� + ���/�2�xc�1 − xc�� � 3/�2�� + �/�2xc� .

�24�

Substituting tc from Eq. �24� into Eq. �23� we obtain an
equation for xc. To find an estimation of the order of magni-
tude of tc we solve the equation for xc approximately. Using
Newton’s method we find the final expression for the critical
time

tc �
3

2�
+

�

2
�1

4
−

4

3
−

a1�1
0

�
− a0
 3

2�
+ 2�� + ln
1 − x0

3x0
�

− 32
9 + 8a0�

�
−1

.

�25�

Using Eqs. �4� and �16�, we find that the mean value of
x�t� is given by

�x�t�� =
1

�2	�22�t�
�

−�

� 1

exp��� + 1
exp�−

�� − m2�t��2

2�22�t�
�d�

=
1

�2	�22�t�

�

0

� exp�− �� − m2�t��2/�2�22�t���
exp��� + 1

d�

+ �
0

� exp�− �� + m2�t��2/�2�22�t���
exp�− �� + 1

d�� . �26�

Under quite general conditions for t→� we can show that
�x����1/2. Indeed
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FIG. 4. Top graphic: On the abscissa the time t and on the
ordinate �x�t��. The continuous line is the numerical evaluation of
Eq. �26� while the dotted line is obtained using the first three terms
of Eq. �28�. Bottom graphic: On the abscissa the time t, starting
from t=1, and on the ordinate the percentual error between the
numerical and the analytical evaluation of �x�t��.
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FIG. 3. Plot of y1=ln�1−x�−ln x and y2=−2�22�t�x+�22�t�
+m2�t�. Plot �a� is for a time t� tc and plot �b� for t� tc. The critical
parameter satisfies the relation a0��1.
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�x�t�� 
1

�2	�22�t�
�

0

� exp�−
�� + m2�t��2

2�22�t�
�

exp�− �� + 1
d�


1

�2	�22�t�
1

2
�

0

�

exp�−
�� + m2�t��2

2�22�t�
�

= 1
4�1 − erf�m2�t�/�2�22�t�� , �27�

where erf�x� is the error function. Imposing the condition
m2�t� /�2�22�t�→−� for t→� and using the asymptotic
properties of the function erf�x� we conclude that �x����
1/2. Returning to Eq. �26� and performing a series expan-
sion for the terms in the denominator of the integral we ob-
tain

�x�t�� = �
n=0

�
�− 1�n

2
exp�− �n + 1�m2�t� +

�n + 1�2

2
�22�t��


�1 + erf
m2�t� − �n + 1��22�t�
�2�22�t�

�� + 1

−

1 + erf
 m2�t�
�2�22�t�

�
2

+ �
n=1

�
�− 1�n

2
exp�nm2�t�

+
n2

2
�22�t���1 − erf
m2�t� + n�22�t�

�2�22�t�
�� . �28�

It is worth stressing that, under the conditions t→�, m2�t�
→−�, and �22�t�→�, the divergent exponentials in the
series are balanced by the asymptotic expansion of the
error function so that the convergence to the unit limit
value is driven at the lowest order by the exponential
exp�−m2

2�t� / (2�22�t�)�. In general, with a few terms of the
series, the percentual difference with respect to the exact
result is of the order of 1% or less �see Fig. 4�.

We now provide a formula to calculate higher moments.
Introducing the new variable �=�−m2�t� we obtain

�x�t�� =
1

�2	�22�t�
�

−�

� 1

exp�� + m2�t�� + 1


exp�− �2/�2�22�t���d� . �29�

From Eq. �29�, we obtain for the nth moment of x�t�

�xn�t�� = �− 1�n−1 zn

��n�
�n−1

�zn−1�1

z
�x�t���, z � exp�− m2�t�� .

�30�

We stress that the white noise case can be obtained in a
straightforward manner from the previous results in the limit
c→�2 and �→�. In fact, from Eqs. �12� and �14�, in this
limit we obtain m2�t�=�2

0−a0�t− t0� and �22�t�=a1
2�t− t0�,

while for the critical parameter � we obtain �=1/a1
2. In the

case of weak white noise, corresponding to a1
2t→0, the

Gaussian in Eq. �29� can be approximated by a Dirac delta
giving a result that, unless of a scaling factor, coincides with
the result of Ref. �24�.

In this paper we obtained an exact solution for the PD of
the BMV model driven by a multiplicative colored noise. We
studied the conditions under which the PD, in the MV model,
exhibits a transition from a unimodal to a bimodal distribu-
tion. This transition is regulated by a critical parameter, �,
which according to the condition a0�1 or a0��1 will have
a unimodal or a bimodal distribution, respectively. We per-
formed an evaluation of the time at which this transition
occurs. Next we showed that the mean value, �x�t��, always
asymptotically approaches 1. For this model we provided a
formula to calculate the higher order moments of the process
x�t�. Finally we examined the white noise case. We found
that the difference with the colored noise case rests on the
fact that the transient terms, in the quantities m2 and �22,
vanish.
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